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INTRODUCTION 

I 
I 
I 
11 

The present report  concerns e f fo r t s  t o  extend slender-body theory fo r  
t h e  purpose of accurately predicting the  forces and moments associated with 
flow separation from the  wing leading edges. The theory of Reference 1, 

which was developed t o  pred ic t  t he  f l o w  f i e l d  associated with leading-edge 
separation, su f f e r s  from two major shortcomings. F i r s t ,  the  separated 
normal force i s  overpredicted, apparently because the  loca l  shedding r a t e s  
a r e  overpredicted, and second, the predicted vortex sheet shapes a re  q u i t e  
u n r e a l i s t i c ,  producing highly i r regular  curves, pa r t i cu la r ly  when large 
numbers of vor t ices  a r e  introduced. 

The r a t e  a t  which v o r t i c i t y  i s  shed from the  wing leading edges i s  pre- 

d ic ted  i n  Reference 1 on the  basis  of t he  l a t e r a l  ve loc i ty  a t  t he  s ide  edge 
of a two-dimensional p la te .  It  would appear t h a t  such a model does not 
properly account fo r  t he  f a c t  t h a t  t h e  span of t he  p l a t e  i s  a function of 
x (o r  t i m e ) ,  s ince the  ve loc i ty  poten t ia l  i n  the  cross-flow plane i s  un- 

a f fec ted  by the  l a t e r a l  growth of the p la te .  That i s ,  the  poten t ia l  depends 
only upon the  loca l  span a t  t h a t  s ta t ion ,  not upon i t s  r a t e  of expansion. 
Therefore, the f i r s t  two sect ions of t he  analysis  dea l  with t h e  vortex sheet 
shed from a two-dimensional p l a t e  whose w i d t h  i s  a function of time. 

The t h i r d  portion of t h e  analysis w i l l  be concerned with removing the  
i r r e g u l a r i t i e s  i n  t he  vortex sheet shape which a re  produced a s  a r e s u l t  of 
t h e  d i s c r e t e  vortex approximation. So long a s  one represents a continuous 
vortex sheet by a number of d i scre te  vor t ices ,  high ve loc i t i e s  w i l l  r e s u l t  

when two vor t ices  come close together, and the  r e su l t i ng  sheet shape w i l l  
be d i s to r t ed .  Furthermore, t he  larger t h e  number of vor t ices  used, t h e  more 
d i f f i c u l t  t h i s  problem becomes. Thus, convergence w i t h  number of vor t ices  

may be impaired. Therefore, a "smoothing" technique w i l l  be employed by 
which one forces the  d i s c r e t e  vort ices  onto a smooth s p i r a l  a t  each s t e p  i n  

the roll ing-up process. 

ii 



1 
I 
I 
I 
I 
1 
I 
I 
1 
1 
1 
1 
I 
1 
1 
I 
I 
1 

INTRODUCTION 

LIST OF FIGURES 

1. ANALYSIS 

TABLE OF CONTENTS 

Page 
No. 

1.1 Force on a Growing Two-Dimensional Plate 
1.2 Unsteady Pressure Relation 
1.3 Smoothing the Vortex Sheet with a Spiral Curve Fit 

2. CALCULATIONS 

3. CONCLUS I O N S  

REFERENCES 

FIGURES 1 THROUGH 3 

iii 

ii 

iv 

1 

1 
1 
3 

5 

6 

7 



LIST O F  FIGURES 

1.- Mathematical s p i r a l  given by  Equation ( 7 ) .  

2 . -  Trail ing-edge vortex sheet shape for  aspect r a t i o  1 . 0  d e l t a  wing 
a t  a = 20' .  

(a)  Uncorrected. 

2 . -  Concluded. (b) Corrected by least-squares s p i r a l  curve f i t .  

3 . -  Effect  of s p i r a l  curve f i t  on calculated separation normal force for  
a d e l t a  wing of aspect r a t i o  l . O a a t  a = 20'. 

i v  



EXPLORATORY STUDY OF THE VORTEX SHEETS SHED FROM 
THE LEADING EDGES OF SLENDER WINGS 

1. ANALYSIS 

1.1 Force on a Growing Two-Dimensional P l a t e  

After i n i t i a l  attempts t o  extend t h e  c l a s s i c a l  wake solut ions of 

Kirchoff ( see  Ref. 2) and Anton (Ref. 3)  t o  t he  case of a two-dimensional 
growing p la te ,  it became apparent t h a t  ne i ther  of these solut ions i s  appli-  
cable t o  the  present problem. In t h e  case of the free-streamline (Kirchoff) 
so lu t ion ,  t h e  appropriate assumption for  a growing p l a t e  would be a growing 

dead-water region above the  p l a t e .  This assumption leads t o  an increased 
shedding ve loc i ty  and an increased force on the  p la te .  A s imi la r  r e s u l t  i s  
obtained from the  solut ion of Anton (Ref. 3) f o r  a pa i r  of s p i r a l  vortex 
sheets.  But i n  both cases, t he  assumed wake form i s  inconsis tent  with the 

physical p ic ture  of t he  wake behind a growing p l a t e  and the  increased force 
i s  a d i r e c t  consequence of t h e  cons t ra in ts  placed on t h e  wake shape. That 
i s ,  both of t h e  above models lead t o  the  concept of a wake which expands with 

t h e  p l a t e .  Actually, t he  growth of t h e  p l a t e  w i l l  cause the  vortex sheets  

t o  be f l a t t ened  toward t h e  leeward s ide  of t he  p la te ,  thus producing a 
smaller wake (see  sketch) .  

Kirchof f Anton Growing Pla te  

I n  view of these findings,  a more fundamental approach i s  required,  a s  
out l ined i n  t he  following sect ion.  

1 . 2  Unsteady Pressure Relation 
I 
1 If w e  wish t o  inves t iga te  t h e  shedding of v o r t i c i t y  from a two-dimensional 

p l a t e  whose width i s  a function of t i m e ,  t he  appropriate pressure r e l a t ion  
i s  t h e  unsteady Bernoulli equation; t h a t  i s ,  
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where @t i s  the t i m e  d e r i v a t i v e  o f  the p o t e n t i a l ,  q i s  the loca l  f l u i d  

v e l o c i t y ,  and 52 i s  a c o n s t a n t .  
The f u n c t i o n  f (t) i s  t h e  same f u n c t i o n  everywhere i n  the f low f i e ld ,  

provided  t h a t  the r e g i o n  i s  s imply  connec ted ;  t h a t  i s ,  so long  as t h e  wake 
i s  n e i t h e r  closed nor  i n f i n i t e  i n  ex ten t .  Thus,  a p p l y i n g  Equat ion  (1) t o  

the  i n t e r n a l  and e x t e r n a l  s ides  of the vortex sheet (see s k e t c h ) ,  w e  f i n d  

t 

( P i  - Pel 1 

Qti - @te) + 

P + - 2 Gi2 - qe3 = 0 

But s i n c e  the  p r e s s u r e s  on the two sides of the sheet must be equa l ,  the 
second t e r m  v a n i s h e s  and w e  have  

F u r t h e r ,  w e  r e c o g n i z e  (9, + q i ) / 2  
and (qe - qi) as the  v o r t i c i t y  of the  sheet.  I f  w e  d e n o t e  these by vs 
and y ,  r e s p e c t i v e l y ,  w e  can  w r i t e  

as the t a n g e n t i a l  v e l o c i t y  of the sheet 

F i n a l l y ,  the d i f f e r e n c e  i n  

a t i v e  of the jump i n  p o t e n t i a l ,  which i s  t h e  c i r c u l a t i o n .  That  i s ,  
@t a c r o s s  the sheet i s  e q u a l  t o  the t i m e  d e r i v -  
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Hence, t h e  f i n a l  r e l a t ion  f o r  t h e  vortex sheet i s  

1 
(6) 

dr 
d t  - vs . - -  

which r e l a t e s  t he  shedding r a t e  t o  the  shedding ve loc i ty  and the  v o r t i c i t y  I 
I 
1 
8 
1 
1 
1 
1 
1 

of t h e  sheet .  
It w i l l  be noted i n  the  above der ivat ion t h a t  no assumption was made 

regarding the  change of p l a t e  width with t i m e ,  and t h a t  qi and qe r e f e r  
t o  the  absolute f l u i d  ve loc i t i e s  immediately above and below the  sheet ;  t h a t  

i s ,  t he  f l u i d  ve loc i t i e s  a re  not r e l a t i v e  t o  the  expanding s ide  edge of t he  
p l a t e .  Furthermore, Equation(6) i s  p rec ise ly  t h e  r e l a t ion  used i n  t h  anal- 
y s i s  of Reference 1 i n  which v was calculated d i r e c t l y  from the poten t ia l ,  -22 y was calculated by assuming a f l a t  vortex sheet  of uniform strength 
which s a t i s f i e s  t he  Kutta condition a t  t he  l o c a l  wing edge. Therefore, 
s ince t h e  po ten t i a l  @ depends only on t h e  l o c a i  width of t h e  p l a t e  (not 
on i t s  r a t e  of expansion), and since t h e  complex ve loc i ty  from which v i s  
extracted i s  obtained by d i f f e ren t i a t ion  i n  t h e  plane x = constant,  it i s  
concluded t h a t ,  within the  framework of slender-body theory, t h e  analysis  
of Reference 1 does, i n  f a c t ,  properly account fo r  t h e  f a c t  t h a t  t h e  p l a t e  
width i s  var iable .  

~ p " " '  

=/#- 

S 

S 

It  w i l l  be reca l led  t h a t  the  numerical ca lcu la t ions  of Reference 1 were 
i n i t i a t e d  by assuming t h a t  t h e  shedding ve ioc i ty  of t he  f i r s t  vortex p a i r  
i s  given by t h a t  of t h e  steady free-streamline flow, namely, 

Q v = v -  S 2 

O n e  might expect t h a t  a b e t t e r  s t a r t i n g  value would be obtained from a solu- 

t i o n  of t h e  unsteady free-streamline flow fo r  a growing p l a t e ,  using Equa- 
t i o n  (1). However, it was found i n  t h e  study of Reference 1 t h a t  t h e  solu- 
t i o n  f o r  slender wing-body combinations i s  qu i t e  i n sens i t i ve  t o  t h e  s t a r t i n g  
value and therefore  does not appear t o  warrant such a s tep .  

1 . 3  Smoothing t h e  Vortex Sheet w i t h  a S p i r a l  Curve F i t  

I 
I 
I 

Several experimental invest igat ions using various v isua l  flow tech- 
niques (e.g. ,  R e f s .  4 and 5) have indicated t h a t  t h e  primary vortex shed 

from t h e  leading edge of a slender wing assumes t h e  shape of a smooth s p i r a l  
curve. This shape i s  c lose ly  approximated by the  s p i r a l  equation (see Fig. 1). 

I 
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where m i s  a dimensionless exponent r e f l e c t i n g  t h e  r a t e  a t  which the  
s p i r a l  approaches i t s  center (yo,zo) and eo i s  the  asymptotic angle t h e  

s p i r a l  curve makes with t h e  y-axis as R becomes i n f i n i t e .  
The s p i r a l  form given by Equation (7)  i s  a l s o  the  form which a r i s e s  i n  

t h e  t h e o r e t i c a l  treatments of Kaden (Ref. 6) and Anton ( R e f .  3)  which dea l  
with the  roll ing-up of continuous vortex sheets.  It would therefore  seem 

des i r ab le  t o  pass a least-squares s p i r a l  curve of t h i s  form through the  
calculated vortex posi t ions fo r  t h e  d i sc re t e  vortex model of Reference 1. 
That i s ,  a t  each chordwise s t a t ion  a t  which a vortex is  introduced, one 
would f i t  a l l  of t he  previously shed vor t ices  onto a least-squares s p i r a l  
curve by displacing them s l i g h t l y  before proceeding t o  the  next s t a t ion .  

This would prohibi t  t h e  ra ther  large d i s to r t ions  observed i n  t h e  sheet shapes 
calculated i n  Reference 1, and might s ign i f i can t ly  a f f ec t  t h e  calculated 
forces  due t o  separation. 

the nth vortex t o  l i e  along a ray  en a t  a dis tance rn from the  or ig in  
of t he  s p i r a l .  Then, the  least-squares r a d i a l  e r r o r  from the  mathematical 
s p i r a l  of Equation ( 7 )  i s  given by (Ref. 7) 

I n  order t o  accomplish t h i s  "smoothing" of t he  vortex sheet ,  we consider 

k 
\- 

n=i  

where 

and k i s  the  number of vor t ices  (which must exceed t h e  number of constants 

involved). The point on the  s p i r a l  curve corresponding t o  the  n th vortex 
i s  given by 
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where 

Note t h a t  t he  quant i ty  
A, m y  yo, zo, eo. We must therefore  minimize t h e  e r r o r  I,  with respect t o  
each of these  and de te rmine  t h e i r  values by a standard least-squares pro- 

cedure ( see  Ref. 7 ) .  This involves d i f f e ren t i a t ing  t h e  e r r o r  with respect  

t o  each parameter, s e t t i n g  the  der ivat ives  a l l t o z e r o ,  l inear iz ing  t h e  
r e su l t i ng  equations, and solving by i t e r a t ion .  

(rn - Rn) i s  a function of the  f i v e  f r e e  parameters 

The number of i t e r a t i o n s  required i n  t h i s  procedure depends strongly 

on the  accuracy of t he  f i rs t  guess, pa r t i cu la r ly  f o r  t h e  parameter m. I f  
t h e  f i r s t  guess i s  not within a reasonable tolerance (say 2 2 5  t o  50 percent) ,  
then so lu t ions  cannot be expected. Furthermore, it i s  possible  t o  have 

more than one solut ion i n  such nonlinear problems. For these reasons, four 
sample cases were run (using s i x  vort ices)  on the IBM 1620 which bracket 
t he  range of i n t e r e s t  (aspect r a t i o  1 and 2 fo r  a = 10 and 2 0 ' ) .  This 
was done t o  ensure su i t ab le  s t a r t i n g  values beginning with s i x  vor t ices  i n  
t h e  f i e l d  (k = number of parameters plus one).  These truncated cases indi-  
cated t h a t  convergence was exceedingly d i f f i c u l t  t o  achieve i f  
t r ea t ed  a s  an unknown. It was therefore  considered expedient t o  f i x  i t s  
value and solve f o r  t h e  other  four parameters. Best r e s u l t s  were obtained 

by s e t t i n g  eo = - ~ / 2  ( see  Fig. 1). 

s t a t ion  the rea f t e r  (k > 6) were taken t o  be the  converged values a t  t h e  
previous s t a t i o n ,  except f o r  t he  parameter A. The i n i t i a l  guess fo r  A 

a t  each chordwise s t a t ion  was determined by assuming t h a t  t he  s p i r a l  passes 
through t h e  vortex j u s t  shed a t  t h a t  s ta t ion .  

0 

eo i s  

The i n i t i a l  guesses f o r  the  remaining four parameters a t  each chordwise 

2 .  CALCULATIONS 

I n  order t o  inves t iga te  the  e f fec t  of t h e  curve- f i t t ing  o r  "smoothing" 
of t he  vortex sheet  shape on the  calculated forces and moments on slender 

wings, a sample calculat ion was carr ied out on the  IBM 7094 f o r  a d e l t a  

wing of aspect  r a t i o  1 .0  a t  20 angle of a t tack .  The ca lcu la t ion  was per- 
formed using 48 vor t ices ,  with the  curve f i t  applied a t  each chordwise 

s t a t i o n  t o  a l l  vor t ices  shed ahead of that  s t a t ion .  A comparison of t h e  
calculated vortex sheet shapes with and without t h e  s p i r a l  curve f i t  i s  

0 
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shown i n  Figure 2 ,  and 
ne i ther  t he  calculated 

the improvement i s  apparent. On t he  other hand, 
normal force n o r  t he  r a t e  of convergence is  s i g n i f i -  

can t ly  affected ( see  Fig. 3 ) .  

3 .  CONCLUSIONS 

The present invest igat ion has been car r ied  out i n  an attempt t o  improve 
the  theory of Reference 1 f o r  t he  prediction of normal force and pitching 

moment on slender wing-body combinations exhibi t ing leading-edge separation. 
Two apparent shortcomings of the theory have been investigated.  The f i r s t  
i s  t h e  predict ion of v o r t i c i t y  shed from a growing p l a t e ,  and the  second i s  
the  predict ion of a smooth s p i r a l  vortex sheet .  

A de t a i l ed  der ivat ion of t h e  shedding r a t e  from a growing two-dimensional 
p l a t e  ind ica tes  t h a t  the  analysis  of Reference 1 does, i n  f a c t ,  properly 
account for  t h e  r a t e  of change of wing  span with x, subject t o  the  two 
assumptions made i n  Reference 1; namely: (1) a very slender configuration, 
and ( 2 )  a f l a t  vortex sheet segment of uniform v o r t i c i t y  shed a t  each s t a t ion .  

A least-squares s p i r a l  curve f i t  has been applied t o  the  calculated 

posi t ions of t h e  shed vor t ices  a t  each chordwise s t a t ion ,  with the  r e s u l t  
t h a t  the  predicted vortex sheet shape closely resembles the  smooth s p i r a l  
curve observed experimentally. However, t he  e f f e c t  on the  calculated normal 
force and center  of pressure on slender wings appears t o  be in s ign i f i can t .  
The r a t e  of convergence with number of vor t ices  i s  s imi la r ly  unaffected by 
t h i s  modification. 

It i s  therefore  concluded t h a t  the overprediction of the  shedding r a t e  
and the  corresponding overprediction of the  normal force fo r  wings of 
f i n i t e  aspect r a t i o  i s  brought about by three-dimensional e f f e c t s  which can- 
not be handled within the  framework of slender-body theory. O n e  must evi- 

dent ly ,  therefore ,  r e s o r t  t o  a t r u l y  three-dimensional theory i f  one i s  t o  
achieve more accurate predict ions than those of Reference 1 for  t he  forces 

produced by leading-edge separation. 
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F i g u r e  1.- Mathematical s p i r a l  g i v e n  by Equat ion  ( 7 ) .  
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F i g u r e  3 . -  E f f e c t  of s p i r a l  curve f i t  on c a l c u l a t e d  
s e p a r a t i o n  n o r m a l  force for a delta wing of aspect 
r a t i o  1.0 a t  CT := 20'. 


